document.addEventListener('DOMContentLoaded', function() { const tables = document.querySelectorAll('table'); tables.forEach(table => { const elements = table.querySelectorAll('*'); elements.forEach(element => { const bgcolor = element.getAttribute('bgcolor'); if (bgcolor) { // Convert bgcolor to RGB const r = parseInt(bgcolor.slice(1,3), 16); const g = parseInt(bgcolor.slice(3,5), 16); const b = parseInt(bgcolor.slice(5,7), 16); // Calculate luminance const luminance = (0.299 * r + 0.587 * g + 0.114 * b) / 255; // Find all spans within this element const spans = element.querySelectorAll('span'); spans.forEach(span => { // Set text color based on background luminance span.style.color = luminance > 0.5 ? '#000000' : '#FFFFFF'; }); } }); }); });

How air is getting into your pressurized hydraulic system?

By webadmin | in Hydraulic system

Air typically enters the hydraulic system through the the pump inlet and, under certain conditions, past the rod seal of a double-acting cylinder.
a
But air can also invade the system through joints in pressurized plumbing.
a
When fluid travels through a pipe or hose at relatively high velocity - in a pressure line for example, and has to change direction through a tee or elbow, a venturi effect can be created.
a
Because the sealing arrangement of the hydraulic connector is designed to withstand positive pressure - but not negative pressure, air can be drawn into the system - even when the plumbing has no apparent leaks.
a
If you made a glass model of a pipe elbow and connected a measuring point in the middle of the angle, you would see a negative pressure when fluid passed through the elbow at high velocity.
a
And if you looked carefully, you'd likely see air bubbles entering the system through the seal of the measuring connection.
a
What it comes down to is use as few sharp angles - tee-pieces, elbows, etc in hydraulic plumbing as possible. a a Craig Cook

Copyright © 2024. All Rights Reserved.